On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group - Analyse en grande dimension, aspects géométriques et probabilistes
Pré-Publication, Document De Travail Année : 2016

On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group

Résumé

In this note, we derive a new logarithmic Sobolev inequality for the heat kernel on the Heisenberg group. The proof is inspired from the historical method of Leonard Gross with the Central Limit Theorem for a random walk. Here the non commutativity of the increments produces a new gradient which naturally involves a Brownian bridge on the Heisenberg group. This new inequality contains the optimal logarithmic Sobolev inequality for the Gaussian distribution in two dimensions. We show that this new inequality is close to the symmetrized version of the sub-elliptic logarithmic Sobolev inequality of Hong-Quan Li on the Heisenberg group, seen as a weighted inequality. We show furthermore that a semigroup approach can produce such weighted inequalities.
Fichier principal
Vignette du fichier
heis.pdf (189.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01343646 , version 1 (08-07-2016)
hal-01343646 , version 2 (06-06-2018)
hal-01343646 , version 3 (01-09-2020)

Identifiants

Citer

Michel Bonnefont, Djalil Chafaï, Ronan Herry. On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group. 2016. ⟨hal-01343646v1⟩

Collections

LAMA_AGDAGP
291 Consultations
568 Téléchargements

Altmetric

Partager

More