Equipartitions and Mahler Volumes of Symmetric Convex Bodies - Analyse en grande dimension, aspects géométriques et probabilistes
Article Dans Une Revue American Journal of Mathematics Année : 2022

Equipartitions and Mahler Volumes of Symmetric Convex Bodies

Résumé

Following ideas of Iriyeh and Shibata we give a short proof of the three-dimensional Mahler conjecture for symmetric convex bodies. Our contributions include, in particular, simple self-contained proofs of their two key statements. The first of these is an equipartition (ham sandwich type) theorem which refines a celebrated result of Hadwiger and, as usual, can be proved using ideas from equivariant topology. The second is an inequality relating the product volume to areas of certain sections and their duals. Finally we give an alternative proof of the characterization of convex bodies that achieve the equality case and establish a new stability result.
Fichier principal
Vignette du fichier
arxiv-1904.10765-v3.pdf (357.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02924423 , version 1 (28-08-2020)

Identifiants

Citer

Matthieu Fradelizi, Alfredo Hubard, Mathieu Meyer, Edgardo Roldán-Pensado, Artem Zvavitch. Equipartitions and Mahler Volumes of Symmetric Convex Bodies. American Journal of Mathematics, 2022, 144 (5), pp.1201-1219. ⟨10.1353/ajm.2022.0027⟩. ⟨hal-02924423⟩
98 Consultations
109 Téléchargements

Altmetric

Partager

More