In vitro aggregation of the amyloid protein Tau and study of its impact on membrane models using various biophysical methods
Agrégation in vitro de la protéine amyloïde Tau et étude de son impact sur des modèles membranaires par différentes méthodes biophysiques
Résumé
Neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, affect cognitive and motor functions. They are characterized by a progressive loss of neurons, with no possibility of regeneration. With an aging population, these predominantly age-related diseases represent a major societal challenge. The lack of early diagnosis, effective treatments, and understanding of the underlying mechanisms highlights the need for further investigation. Patients suffering from these diseases exhibit abnormal protein accumulations in the form of insoluble aggregates, within or near brain cells. Although each proteinopathy presents specific aggregates, they share common features, notably their amyloid structure. These amyloids, formed by the misfolded protein monomers’ self-assembly through stacking, adopt a characteristic cross-β structure. Several pathogenic amyloid proteins have been identified and are associated with various neurodegenerative diseases. The Tau protein, implicated in Alzheimer’s disease and more broadly in a group of dementias known as tauopathies, is primarily located in neurons, where it stabilizes microtubules, structural elements of the cellular cytoskeleton. However, under pathological conditions, Tau dissociates from the microtubules, becomes hyperphosphorylated, and forms fibrillar amyloid aggregates. The exact mechanisms of this aggregation remain poorly understood. The study of Tau aggregation relies on the in vitro production of amyloid fibers. Due to its high solubility associated with its positive charge, fiber formation requires the addition of polyanionic molecules, called cofactors, such as heparin (a polysaccharide), RNA, or lipids. However, uncertainties remain regarding the exact role of these cofactors: do they simply catalyze aggregation, or are they integrated into the fiber structure? If so, what impact does this have on the morphology of the aggregates? Tau's ability to aggregate in the presence of lipids raises questions about its behavior in relation to the different membranes of neurons. Tau’s interaction with plasma membranes has been demonstrated and may play a role in both physiological and pathological processes. Does Tau, in the presence of anionic lipids, compromise membrane integrity? What about non-anionic lipids? To address these questions, this thesis project combines several biophysical approaches: attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), transmission electron microscopy (TEM), and plasmon waveguide resonance (PWR). The study is structured around two main axes: (i) characterizing Tau aggregation in the presence of different anionic cofactors (heparin, RNA, phospholipids) and studying their impact on fiber morphology; (ii) assessing the effect of Tau's interaction with lipid membranes of varying compositions on membrane integrity. The results of this thesis provide new insights into the pathogenic mechanisms of Tau and may contribute to a better understanding of tauopathies as well as the development of therapeutic strategies.
Les maladies neurodégénératives, telles que les maladies d'Alzheimer et de Parkinson, affectent les fonctions cognitives et motrices. Elles se caractérisent par une perte progressive de neurones, sans possibilité de régénération. Avec le vieillissement de la population, ces pathologies, principalement liées à l'âge, représentent un enjeu sociétal majeur. L'absence de diagnostic précoce, de traitements efficaces et la méconnaissance des mécanismes en jeu soulignent la nécessité d'en approfondir la compréhension. Les patients atteints de ces maladies présentent des accumulations de protéines anormales sous forme d’agrégats insolubles, dans ou à proximité des cellules cérébrales. Bien que chaque protéinopathie présente des agrégats spécifiques, elles partagent des caractéristiques communes, notamment leur structure appelée amyloïde. Ces amyloïdes, formés par l’auto-assemblage de monomères protéiques mal conformés par empilement, adoptent une structure caractéristique dite en cross-β. Plusieurs protéines amyloïdes pathogènes ont été identifiées et sont associées à diverses maladies neurodégénératives. La protéine Tau, impliquée dans la maladie d'Alzheimer et plus largement dans un groupe de démences appelées tauopathies, est principalement localisée dans les neurones, où elle stabilise les microtubules, éléments structurants du cytosquelette cellulaire. Toutefois, dans des conditions pathologiques, Tau se dissocie des microtubules, devient hyperphosphorylée et forme des agrégats amyloïdes fibrillaires. Les mécanismes exacts de cette agrégation restent mal compris. L'étude de l'agrégation de Tau repose sur la production in vitro de fibres amyloïdes. En raison de sa solubilité élevée liée à sa charge positive, la formation de ces fibres nécessite l’ajout de molécules polyanioniques, appelées cofacteurs, telles que l’héparine (un polysaccharide), des ARN ou des lipides. Cependant, des incertitudes demeurent quant au rôle précis de ces cofacteurs : catalysent-ils simplement l'agrégation ou sont-ils intégrés dans la structure des fibres ? Si tel est le cas, quel impact cela a-t-il sur la morphologie des agrégats ? La capacité de Tau à s'agréger en présence de lipides suscite des interrogations sur son comportement vis à vis des différentes membranes des neurones. L’interaction de Tau avec les membranes plasmiques a été démontrée, et pourrait jouer un rôle autant dans des processus physiologiques que pathologiques. Tau, en présence de lipides anioniques, altère-t-elle l’intégrité membranaire ? Qu'en est-il des lipides non anioniques ? Pour répondre à ces questions, ce projet de thèse combine plusieurs approches biophysiques : spectroscopie infrarouge à réflexion totale atténuée (ATR-FTIR), microscopie à force atomique (AFM), microscopie électronique à transmission (MET) et résonance plasmonique de surface par ondes guidées (PWR). L’étude est structurée autour de deux axes principaux : (i) caractériser l’agrégation de Tau en présence de différents cofacteurs anioniques (héparine, ARN, phospholipides) et étudier l'impact sur la morphologie des fibres ; (ii) évaluer l’effet de l’interaction de Tau avec des membranes lipidiques de différentes compositions sur leur intégrité. Les résultats de cette thèse apportent de nouvelles perspectives sur les mécanismes pathogéniques de Tau et pourraient contribuer à une meilleure compréhension des tauopathies, ainsi qu'au développement de stratégies thérapeutiques.
Origine | Version validée par le jury (STAR) |
---|