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A crisis of the reproducibility of studies reported in leading science journals emerged a few 

years ago1-6. One of the multiple origins of this crisis is that many statistically significant results 

obtained in some studies were not replicated or supported by other ones7-9. One of the reasons 

given is that many published results are false positives: authors wrongly generalize (i.e., infer) 

their results to the target population after obtaining a statistically significant result in their study 

sample10,11. P-hacking and HARKing are ones of the inappropriate methods of analyzing and 

interpreting study results, leading to false positive results. P-hacking (or “p-fishing”) occurs 

when researchers collect data without a predetermined sample size, select data without a priori 

identification of inclusion and exclusion criteria, or select statistical analyses until non-

significant results become significant12-15. HARKing occurs when researchers present a post 

hoc hypothesis based on their results as if it were an a priori hypothesis16. However, even in 

the absence of p-hacking, HARKing, association biases17, or any other errors in scientific 

reporting, the probability to wrongly infer statistically significant results to the target population 

is very high is some situations. The purpose of the paper is to help researchers in veterinary 

science who do clinical research as well as clinicians interpreting those research findings 

appreciate the degree of (un)certainty when generalizing the study results to the target 

population of studied animals, according to the characteristics of the clinical study. This 

appreciation is also necessary to practice evidence-based veterinary medicine18, especially 

when critically appraising evidence within the more general framework of the clinical decision-

making process19,20. 

I. GENERAL CONCEPTS 

Throughout this paper, the context will always be the following: researchers seek to provide 

evidence that there is a true association between one exposure (e.g., neutering status, being 

treated with a treatment versus placebo, surgical versus medical intervention) and one outcome 
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(e.g., disease occurrence, tumor remission, all-cause death). The statistical tests mentioned in 

this paper will therefore test such associations. The conclusions drawn from other statistical 

tests (e.g., those testing the normality of one distribution) will not be addressed. Furthermore, 

to facilitate the reading of the paper, the expression “significant association” will be used for 

“association classified as being statistically significant based on the p-value (p ≤ α)”; such 

expression does therefore not refer to the clinical significance of the association21,22.  

II. HYPOTHETICAL STUDIES 

Two hypothetical studies will illustrate the concepts presented in the paper. For simplification 

purpose, these studies will be considered as feasible and ethical. 

The context of the first study (study #1) is the following: Mullin et al. conducted a non-

randomized study to assess the association between doxorubicin chemotherapy use (versus no 

therapy use) and death occurrence in dogs with presumptive cardiac hemangiosarcoma23. The 

statistically significant difference in death occurrence between the two groups suggested a 

potential effect of doxorubicin chemotherapy on time to death. In this context, the investigators 

of study #1 designed a randomized clinical trial to confirm the beneficial effect of doxorubicin 

chemotherapy within the first four months of use. To do so, they use the figures provided by 

the Kaplan-Meier curves in the paper of Mullin et al.23 (45% and 5% of alive dogs at four 

months, respectively) in order to calculate the sample size with 80% of statistical power (n=79 

dogs in each group). Then they followed the dogs during four months and compared the two 

groups of dogs on death occurrence by using the Kaplan-Meier method and the log-rank test. 

Study #1 can be considered as “confirmatory” since it is conducted to confirm the result of the 

previous study of Mullin et al.  

The context of the second study (study #2) is the following: it has been suggested that masitinib 

monotherapy use has promising potential in treating canine epitheliotropic T-cell lymphoma24. 
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In this context and based on these premises, the investigators of study #2 conducted a 

randomized clinical trial to assess the effect of masitinib in dogs diagnosed with multicentric 

lymphoma on (partial or complete) remission of their lymphoma. To do so, they randomly 

allocate 80 dogs with multicentric lymphoma in one out of two groups: one group receiving 

masitinib plus prednisone (n=40), the other one receiving prednisone only (n=40). This number 

of 80 dogs was not based on an a priori sample size calculation, but based on the available time 

to recruit dogs within in a predefined period. Then they followed the dogs during three months 

and compared the two groups on the presence of partial/complete lymphoma remission at three 

months. Study #2 can be considered as “exploratory” since it is the first one studying such 

association between masitinib plus prednisone use (versus prednisone use only) and lymphoma 

remission in such population of dogs with multicentric lymphoma. 

III. REVIEW OF STATISTICAL CONCEPTS 

Some statistical reminders about the null hypothesis, type-I and type-II errors, and statistical 

power are briefly provided below. These points are covered in more detail elsewhere25. 

A. The null-hypothesis and its acceptance or rejection 

A statistical test testing the association between one exposure and one outcome is based on a 

“null-hypothesis” which is the absence of such association in a predefined (target) population26. 

For instance, the null-hypothesis of the log-rank test performed in study #1 is: “there is no 

association between doxorubicin chemotherapy use (versus no therapy use) and time to death 

in dogs with presumptive cardiac hemangiosarcoma.”. If the null-hypothesis is rejected, one 

concludes that the study provides evidence supporting that there is a true association in the 

population between the exposure and the outcome. Most of the time, the rejection or acceptance 

of the null-hypothesis is based on the p-value provided by the statistical test: if the p-value is 
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less than or equal to a threshold value (α), the association is classified as “significant” in the 

study sample, and it is concluded that the null-hypothesis is false (rejection of the null-

hypothesis). (Such use of the p-value and the “significant” / “non significant” approach has 

however contributed to the reproducibility crisis and is questioned by many scientists27-30.)  

B. Type-I and type-II errors and statistical power 

When there is no true association between the exposure and the outcome in the population (or 

“when the null-hypothesis is true”), the probability of obtaining a significant association (p ≤ 

α) in the study sample is α (also known as the probability of type-I error).  

When there is a true association between the exposure and the outcome in the population (or 

“when the null-hypothesis is false”), the probability of not obtaining a significant association 

(p > α) in the study sample is equal to β (also known as the probability of type-II error). 

Therefore, is such situation, the probability of obtaining a significant association is (1-β), which 

is the value of the statistical power of the study.  

IV. REVIEW OF DIAGNOSTIC TEST CONCEPTS 

The sensitivity (Se) of a diagnostic test is the probability of a positive test result when the 

disease (or any health-related condition) is present, and the specificity (Sp) is the probability of 

a negative test result when the disease is not present. The positive predictive value (PPV) of a 

diagnostic test is the probability that an animal with a positive test result would have the disease. 

In a sample of N animals, Se, Sp, and PPV can be estimated by calculating the proportion of 

true-positive animals among diseased animals (Se), the proportion of true-negative animals 

among disease-free animals (Sp), and the proportion of true positive animals among test-

positive animals (PPV). 
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From the frequencies of Table 1, Se, Sp and PPV can be expressed as: 

𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

𝑃𝑃𝑉 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
                                                                                                                                (1) 

Table 1 can be re-expressed by using proportions instead of frequencies. To do so, let  be the 

prevalence rate of the disease in the population; it is therefore the probability of having the 

disease for an animal randomly drawn from this population before the result of the diagnostic 

test was known. If one randomly draws a sample of N animals from the population in which 

the prevalence rate is , there will be N. diseased animals and N.(1-) disease-free animals. 

Among the N. diseased animals, there will be N..Se true-positive animals; among the N.(1-

) disease-free animals, there will be N.(1-).Sp true-negative animals. Table 2 presents the 

frequencies of Table 1 by using Se, Sp, and  in a sample of N animals.  

Using Formula (1) of the PPV by replacing TP with N..Se and by replacing FP with N.(1-

).(1-Sp), one obtains: 

𝑃𝑃𝑉 =
𝜋. 𝑆𝑒

(1 − 𝜋). (1 − 𝑆𝑝) + 𝜋. 𝑆𝑒
                                                                                               (2) 

The Appendix illustrates the equivalence between Formula (1) and Formula (2) by using data 

from a hypothetical study. Therefore, in a situation where the prevalence rate of the disease () 

is low (for instance, 1%), a diagnostic test which has a very good Se (for instance, 80%) and an 

excellent Sp (for instance, 95%) will have a poor PPV (e.g., 14% provided by Formula (2) by 

using the previous values of , Se, and Sp; see Appendix for illustrative data). A PPV of 14% 



 7/22 

would be interpreted as: only 14% of animals with a positive test for the studied disease actually 

have the disease, while 86% of animals with a positive test are actually disease-free. 

V. APPLICATION OF DIAGNOSTIC TEST CONCEPTS TO STATISTICAL TESTS 

Although the interpretation of diagnostic tests and the interpretation of statistical tests have 

some important divergent concepts, some aspects of diagnostic test interpretation can serve as 

a reasonable metaphor for interpreting statistical tests31. To apply the concept of sensitivity, 

specificity, and positive predictive value of a diagnostic test to a statistical test testing the 

association between one exposure and one outcome, one must define what are the analogous 

terms for having the disease, for being disease-free, and for having positive and negative test 

results. With a statistical test, researchers seek for evidence that there is a true association in 

the population (i.e., evidence supporting that the null-hypothesis is false). A significant 

association in the study sample is in favor of the evidence they are seeking. In the situation of 

diagnostic tests, clinicians seek for evidence that the animal has the studied disease. A positive 

test for this disease is in favor of the evidence they are seeking. Therefore, the analogies 

described in Table 3 can be made32. 

The sensitivity of a diagnostic test is the probability of obtaining a positive test result when the 

disease is present. By analogy (see Table 3), the sensitivity of a statistical test is therefore the 

probability of obtaining a significant association when the null-hypothesis is false. This is 

analogous to the statistical power of a study (1-β). The specificity of a diagnostic test is the 

probability of obtaining a negative test result when the disease is absent. By analogy (see Table 

3), the specificity of a statistical test is the probability of obtaining a non-significant association 

when the null-hypothesis is true. Since α is the probability of obtaining a significant association 

when the null-hypothesis is true, by analogy, the specificity of a statistical test is therefore (1-

α).  
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VI. RELEVANCE OF CALCULATING THE PPV OF A STATISTICAL TEST 

In practice, a clinician is much more interested in the PPV of diagnostic tests than the sensitivity 

and specificity of such tests. When a positive test result is obtained for an animal, one would 

like to know the probability that the animal has the studied disease (i.e., the PPV for having the 

disease). By analogy with statistical tests (see Table 3), when a significant association is 

obtained, one would like to know the probability that there is a true association in the population 

(i.e., the PPV for the null-hypothesis being false). For instance, the PPV of the log-rank 

statistical test performed in study #1 is the probability that there is a true association between 

doxorubicin chemotherapy use (versus no therapy use) and time to death in dogs with 

presumptive cardiac hemangiosarcoma, if the investigators obtained a significant association in 

their study sample. 

The analogy for a low PPV of a statistical test indicates that the probability that there is a true 

association in the population is low even when the association is significant. In such situations 

of low PPV, it would not be surprising that a significant result in one study is difficult to 

replicate as being significant in another study of the same association targeting the same 

population10.  

To calculate the PPV of a statistical test, Formula (2) will be used by replacing the sensitivity, 

specificity, and  for diagnostic tests by their analogous values for statistical tests. For a 

statistical test, we previously determined that Se=(1-β) and Sp=(1-α). We must now interpret 

the value of  for statistical tests.  

When researchers plan to design a study to test an association between one exposure and one 

outcome, they have some level of uncertainty that this association actually exists in the 

population. They must have such level of uncertainty because, if they knew with 100% certainty 

that the null-hypothesis is false, a study would not be necessary. Before conducting a study, 
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researchers therefore have in mind an a priori probability that the null-hypothesis is false in the 

studied population, which lies between 0 excluded and 1 excluded. For instance, because the 

association between doxorubicin chemotherapy use (versus no therapy use) and time to death 

in dogs with presumptive cardiac hemangiosarcoma has been previously suggested, the 

investigators of study #1 should have a higher level of certainty that this association truly exists, 

compared to the level of certainty of the investigators of study #2, where the association tested 

in study #2 has never been studied before.  

In the context of diagnostic tests,  was the probability of having the disease for an animal 

randomly drawn from a population before the result of the test was known. By using the 

analogies presented in Table 3, for a statistical test,  would be the a priori probability that the 

null-hypothesis is false (i.e., the a priori probability that the association truly exists in the 

population). The “a priori” expression means “before the result of the statistical test is obtained 

from the study”. (This expression refers to the notion of “prior information” in Bayesian 

statistics33, in the context of the PPV of statistical tests32,34.) As Browner and Newman wrote, 

the value of  for statistical tests is based on “biologic plausibility, previous experience with 

similar hypotheses, and knowledge of alternative scientific explanations”32. Therefore, in an 

exploratory study where researchers are the first ones to assess an association between one 

exposure and one outcome in a specific target population, it must be admitted that the a priori 

probability that such association truly exists () is low, despite the potential strong 

pathophysiological basis for this exploratory study10. 

We can rewrite Formula (2) of the PPV of a diagnostic test by replacing Se and Sp by their 

analogous value for a statistical test ((1-α) and (1-β), respectively): 

𝑃𝑃𝑉 =
𝜋. (1 − 𝛽)

(1 − 𝜋). 𝛼 + 𝜋. (1 − 𝛽)
                                                                                                       (3) 
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With  being the a priori probability that the null-hypothesis is false (i.e., the probability that 

the association truly exists), α the type-I error, β the type-II error, and (1-β) the statistical power.  

The interpretation of Formula (3) is as follows. Suppose that the statistical power of study #2 

is 80% when testing the association between masitinib plus prednisone use (versus prednisone 

use only) and lymphoma remission in dogs with multicentric lymphoma, and α is set at 5% 

(α=0.05). Suppose that the probability that this association truly exists is 1% (i.e., =0.01); this 

low value of  can be explained by the fact that study #2 is exploratory and therefore involves 

much a priori uncertainty about the existence of such association. Based on the characteristics 

of study #2 (a statistical power of 80% and its exploratory status with =0.01), the PPV 

calculated by using Formula (3) is 0.14 (14%). This value of 14% means that if the investigators 

of study #2 conduct this study and obtain a significant association, the probability that this 

association truly exists in the population of dogs with multicentric lymphoma is (only) 14%.  

VII. FALSE POSITIVE REPORT PROBABILITY OF A STATISTICAL TEST 

In the context where researchers would like to estimate the probability of wrongly concluding 

that there is a true association in the population after obtaining a significant one in the study 

sample, the complement of the PPV (1-PPV) is the most relevant indicator. This complement 

of PPV is called “false positive report probability” (FPRP)35,36. The FPRP is therefore the 

probability that there is no true association in the population after obtaining a significant 

association in the study sample. In other words, the FPRP quantifies the probability of wrongly 

concluding that there is a true association in the population after obtaining a significant one in 

the study sample. For instance, the FPRP of the log-rank statistical test used in study #1 is the 

probability of wrongly concluding that there is an association between doxorubicin 

chemotherapy use (versus no therapy use) and time to death in dogs with presumptive cardiac 

hemangiosarcoma after obtaining a significant association in the study sample.  
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We obtain the expression of the FPRP after calculation from Formula (3): 

𝐹𝑃𝑅𝑃 = 1 − 𝑃𝑃𝑉 =
(1 − 𝜋) × 𝛼

(1 − 𝜋) × 𝛼 + 𝜋 × (1 − 𝛽)
                                                                        (4) 

With  being the a priori probability that the null-hypothesis is false (i.e., the probability that 

the association truly exists), α the type-I error, β the type-II error, and (1-β) the statistical power. 

Figure 1 provides numerical examples of FPRP values according to selected values of  and (1-

β). 

VIII. MISINTERPRETATION OF THE TYPE-I ERROR AND P-VALUE 

In the vast majority of cases, the Type-I error α is set at 5% (α=0.05), which is considered as a 

low value. Many researchers wrongly think that since α is low, the conclusion following a 

significant association is accompanied by a (same) low probability of error37,38. Similarly, p-

values are commonly misinterpreted as the observed probability to wrongly reject the null-

hypothesis, which means that researchers commonly and mistakenly interpret the p-value as if 

it were the FPRP39. For instance, if the p-value obtained in study #2 is 0.03, the investigators 

of study #2 would probably conclude with a mistaken belief that there is strong evidence for a 

true association between doxorubicin chemotherapy use (versus no therapy use) and time to 

death in dogs with presumptive cardiac hemangiosarcoma, with a 3% risk of error28,40,41. The 

p-value is actually the probability of the observed or more extreme results, if the null-hypothesis 

were true and if there were no bias when estimating the association. (The p-value has therefore 

no meaningful interpretation per se since its value is conditional on an hypothesis that nobody 

would know with 100% certainty whether it is true or false42.) 
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IX. FACTORS CONTRIBUTING TO A HIGH FALSE POSITIVE REPORT PROBABILITY  

The Formula (4) indicates that the FPRP of a statistical test performed in a study whose 

objective is to provide evidence that there is a true association between one exposure and one 

outcome depends on the probability of type-I error (α), on the statistical power of the study (1-

β), and on the a priori probability that the null-hypothesis is false ().  

A. Impact of the value of the type-I error (α) 

Suppose that, in study #1 designed with 80% of statistical power, the a priori probability that 

the null-hypothesis is false is 20% (i.e., =0.20). If α is set to 1% (α=0.01), the FPRP calculated 

from Formula (4) is 5%; if α is set to 5% (α=0.05), the FPRP increases to 20%. Therefore, and 

more generally, the higher the type-I error (α), the higher the FPRP. This point is one of the 

origins of a scientific movement that questions the type-I error threshold of 5% (α=0.05), and 

proposes to lower it to 0.5% (α=0.005)43. This movement is however not shared by all 

scientists44, and the convention for the type-I error (α) threshold set at 5% is likely to persist for 

years. From now on throughout the paper, the value of α will be set at 5% (α=0.05). 

B. Impact of the value of the statistical power  

Suppose again that study #1 is designed with an a priori probability that the null-hypothesis is 

false of 20% (=0.20). With a statistical power of 80% (by recruiting 79 dogs per group), the 

calculated FPRP is 20%. Suppose now that the investigators were finally able to recruit 39 dogs 

only per group instead of 79, the statistical power decreases to 50%. In this new situation, the 

calculated FPRP increases to 29% (see Figure 1). More generally, the lower the statistical 

power, the higher the FPRP. Since the statistical power of a study is directly related to its sample 

size, the FPRP increases with decreased sample size. This point indicates that a low statistical 

power (or small sample size) not only decreases the chances of obtaining a significant result 
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when there is a true association, but it also makes any obtained significant result more likely to 

be false positive. 

C. Impact of the a priori probability that the null-hypothesis is false 

Suppose again that study #1 is designed with a statistical power of 80% (with 79 dogs per group) 

and that the a priori probability that the null-hypothesis is false is 20% (=0.20). The calculated 

FPRP is 20%. Suppose that study #2 is designed with 80% of statistical power as well (with 40 

dogs per group), but with the a priori probability that the null-hypothesis is false of 1% 

(=0.01), a low value due to its exploratory status. With such characteristics, the calculated 

FPRP of study #2 is 86% (see Figure 1). More generally, the lower the a priori probability that 

the null-hypothesis is false, the higher the FPRP. This point indicates that an exploratory study 

obtaining a significant association in the study sample is more likely to wrongly conclude that 

the association truly exists compared to a confirmatory study. This reasoning above is well 

known by clinicians using diagnostic tests45,46: a diagnostic test can have excellent sensitivity 

and specificity but have a very low PPV (and therefore a high FPRP) if the disease prevalence 

rate is very low. With statistical tests, a similar phenomenon occurs: a statistical test can be very 

sensitive (excellent statistical power) and very specific (low threshold of type-I error α), 

however a significant association in the study sample can very poorly predict the existence of 

a true association in the population if the a priori probability that this true association exists is 

very low.  

The most difficult task to appreciate the probability of wrongly concluding that the association 

truly exists in the population (i.e., the value of the FPRP) is to appreciate the a priori probability 

that the null-hypothesis is false32. Such appreciation is beyond the scope of the paper. Briefly, 

some authors suggested a “reverse-Bayes” reasoning47, which consists in setting the statistical 

power of the planned study and the desired FPRP value, then in seeing whether the value of the 
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a priori probability that the null-hypothesis is false is compatible with the current state of 

knowledge in the field36,48.  

X. CLINICAL SUMMARY 

The probability of wrongly concluding that there is a true association in the population between 

one exposure and one outcome after obtaining a significant association in the study sample is 

neither equal to α nor to the p-value. Such probability (the “false positive report probability”, 

or FPRP) depends on the characteristics of the study, namely its statistical power and its 

“confirmatory” versus “exploratory” status based on previous results in the same field. 

In the case of an exploratory study (i.e., no previous studies have studied the same association 

in the same population yet), which is not uncommon in veterinary clinical research, researchers 

cannot be convinced that there is a true association in the population after obtaining a significant 

one in their study sample. However, in a study designed to confirm a result that other high-

quality studies have previously obtained, researchers can start to be confident when they 

conclude that there is a true association after obtaining a significant one in their study sample.  

Furthermore, and importantly, unless the true association is strong, a small sample size (which 

is also not uncommon in veterinary clinical research) prevents one from being confident when 

concluding, even after obtaining a significant association in the study sample.  

Researchers can start to be confident when they conclude that there is a true association in the 

population between one exposure and one outcome after obtaining a significant one in the study 

sample if (1) the statistical power of the study is high (at least 80%), and (2) the amount of 

knowledge on the subject of the study allows to estimate the a priori probability that this 

association truly exists of at least 20%. In such a situation, when the association is significant, 

the probability of wrongly concluding that this association truly exists is 20% (FPRP=20%). 
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One may think that such probability of 20% is too elevated, compared to the 5% that most 

researchers have in mind when they conclude after obtaining a significant association. 

However, to reach an FPRP of 5%, the study must have the following characteristics: having a 

statistical power of 80% and being confirmatory with an a priori probability that there is a true 

association as high as 54% (=0.54). Unfortunately, such confirmatory studies would not likely 

be designed because researchers would be concerned that most funding sources and journals 

would prioritize projects as being more innovative3,49. This is the reason why confirmatory 

studies should be much more encouraged than they actually are50. 

The readers must keep in mind that the interpretation of the probability of wrongly concluding 

that there is a true association in the population after obtaining a significant one in the study 

sample (i.e., the FPRP) assumes the absence of p-hacking, HARKing, association biases, or any 

other errors in scientific reporting. Even in this ideal world, the calculation of the FPRP, as it 

has been presented in this paper (and in other ones10,35), is still likely to be too optimistic48 (i.e., 

the FPRP is likely to be even higher). Researchers as well as clinicians must nonetheless be 

aware that a significant association often provide a weak evidence that this association truly 

exists in the population. Such awareness is a necessary step to communicate more cautiously 

when writing the clinical relevance of the results of one study, potentially leading to clinical 

decisions thereafter. More generally, it is a necessary step for better veterinary research and 

(self-)evaluation of scientific research when practicing evidence-based veterinary medicine. 
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Figure 1. Values of the false positive report probability (FPRP) according to the statistical 

power of a study (1-β) and the a priori probability that the null-hypothesis is false (), for an 

type-I error set at 5% (α=0.05). 
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Appendix  

To illustrate Formula (2), suppose the data shown in Table 4 from a hypothetical study of 1493 

animals, including 20 diseased animals and 66 animals with a positive test result for a diagnostic 

test.  

By using the classical formulas of Se, Sp, and PPV (see formulas under Table 1), we obtain: 

𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

12

15
= 0.80 

𝑆𝑝 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
=

1404

1478
= 0.95 

𝑃𝑃𝑉 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
=

12

86
= 0.14 

In order to calculate the PPV of the diagnostic test from Formula (2), we need to calculate , 

the proportion of diseased animals:  = 15/1493 = 0.01. By including the values of Se, Sp, and 

 in Formula (2), we obtain the same value for the PPV of the diagnostic test as the previously 

calculated one: 

𝑃𝑃𝑉 =
0.01 × 0.80

0.01 × (1 − 0.95) + 0.01 × 0.80
= 0.14 
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Table 1. Distribution of frequencies within a sample size of N animals according to the results 

of a diagnostic test and the absence/presence of the disease. 

Result of a diagnostic test Disease present Disease absent Total 

Positive True Positive (TP) False Positive (FP) FP+TP 

Negative False Negative 

(FN) 

True Negative 

(TN) 

TN+FN 

Total TP+FN FP+TN N 

 

Table 2. Distribution of frequencies within a sample size of N animals according to sensitivity 

(Se) and specificity (Sp) of a diagnostic test, and according to the proportion  of diseased 

animals in the sample. 

Result of a diagnostic test Disease present Disease absent Total 

Positive 

N..Se N.(1-).(1-Sp) 

N.((1-).(1-

Sp)+.Se) 

Negative 

N..(1-Se) N.(1-).Sp 

N.((1-).Sp+.(1-

Se)) 

Total N. N.(1-) N 
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Table 3. Analogies between diagnostic and statistical tests. 

Situation of diagnostic tests Corresponding situation for statistical tests 

“To have the disease” 

“There is a true association in the population” (“the null-

hypothesis is false”) 

“To be disease-free” 

“There is no true association in the population” (“the 

null-hypothesis is true”)  

“To obtain a positive result” “To obtain a significant association” (“p ≤ α”) 

“To obtain a negative result” “To obtain a non-significant association” (“p > α”) 

 

Table 4. Illustrative example of distribution of frequencies within a sample size of 1493 animals. 

Result of a diagnostic test Disease present Disease absent Total 

Positive 12 74 86 

Negative 3 1404 1407 

Total 15 1478 1493 

 

 

 

 

 


