Can the detection dog alert on COVID-19 positive persons by sniffing axillary sweat samples? A proof-of-concept study - EnvA - École nationale vétérinaire d'Alfort Accéder directement au contenu
Article Dans Une Revue PLoS ONE Année : 2020

Can the detection dog alert on COVID-19 positive persons by sniffing axillary sweat samples? A proof-of-concept study

Dominique Grandjean
Riad Sarkis
  • Fonction : Auteur
Aymeric Benard
  • Fonction : Auteur
Vinciane Roger
  • Fonction : Auteur
  • PersonId : 1271524
  • IdRef : 223416630
Eric Levesque
  • Fonction : Auteur
Eric Bernes-Luciani
  • Fonction : Auteur
Bruno Maestracci
  • Fonction : Auteur
Pascal Morvan
Eric Gully
  • Fonction : Auteur
David Berceau-Falancourt
  • Fonction : Auteur
Pierre Haufstater
  • Fonction : Auteur
Gregory Herin
  • Fonction : Auteur
Jean-Marie Broc
  • Fonction : Auteur
Leo Thomas
  • Fonction : Auteur
Anthony Lichaa
Georges Moujaes
  • Fonction : Auteur
Michele Saliba
  • Fonction : Auteur
Aurore Kuhn
  • Fonction : Auteur
Mathilde Galey
  • Fonction : Auteur
Benoit Berthail
  • Fonction : Auteur
Lucien Lapeyre
  • Fonction : Auteur
Anthoni Capelli
  • Fonction : Auteur
Steevens Renault
  • Fonction : Auteur
Karim Bachir
  • Fonction : Auteur
Anthony Kovinger
  • Fonction : Auteur
Eric Comas
  • Fonction : Auteur
Aymeric Stainmesse
  • Fonction : Auteur
Erwan Etienne
  • Fonction : Auteur
Sébastien Voeltzel
  • Fonction : Auteur
Sofiane Mansouri
  • Fonction : Auteur
Marlène Berceau-Falancourt
  • Fonction : Auteur
Aimé Dami
  • Fonction : Auteur
Lary Charlet
  • Fonction : Auteur
Eric Ruau
  • Fonction : Auteur
Mario Issa
  • Fonction : Auteur
Carine Grenet
  • Fonction : Auteur
Christophe Billy
  • Fonction : Auteur
Jean-Pierre Tourtier
  • Fonction : Auteur

Résumé

The aim of this proof-of-concept study was to evaluate if trained dogs could discriminate between sweat samples from symptomatic COVID-19 positive individuals (SARS-CoV-2 PCR positive) and those from asymptomatic COVID-19 negative individuals. The study was conducted at 2 sites (Paris, France, and Beirut, Lebanon), followed the same training and testing protocols, and involved six detection dogs (three explosive detection dogs, one search and rescue dog, and two colon cancer detection dogs). A total of 177 individuals were recruited for the study (95 symptomatic COVID-19 positive and 82 asymptomatic COVID-19 negative individuals) from five hospitals, and one underarm sweat sample per individual was collected. The dog training sessions lasted between one and three weeks. Once trained, the dog had to mark the COVID-19 positive sample randomly placed behind one of three or four olfactory cones (the other cones contained at least one COVID-19 negative sample and between zero and two mocks). During the testing session, a COVID-19 positive sample could be used up to a maximum of three times for one dog. The dog and its handler were both blinded to the COVID-positive sample location. The success rate per dog (i.e., the number of correct indications divided by the number of trials) ranged from 76% to 100%. The lower bound of the 95% confidence interval of the estimated success rate was most of the time higher than the success rate obtained by chance after removing the number of mocks from calculations. These results provide some evidence that detection dogs may be able to discriminate between sweat samples from symptomatic COVID-19 individuals and those from asymptomatic COVID-19 negative individuals. However, due to the limitations of this proof-of-concept study (including using some COVID-19 samples more than once and potential confounding biases), these results must be confirmed in validation studies.

Dates et versions

hal-04017390 , version 1 (07-03-2023)

Identifiants

Citer

Dominique Grandjean, Riad Sarkis, Clothilde Lecoq-Julien, Aymeric Benard, Vinciane Roger, et al.. Can the detection dog alert on COVID-19 positive persons by sniffing axillary sweat samples? A proof-of-concept study. PLoS ONE, 2020, 15 (12), pp.e0243122. ⟨10.1371/journal.pone.0243122⟩. ⟨hal-04017390⟩

Collections

IMRB UPEC ENVA
19 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More